
EFFICIENCY IN DYNAMIC GAMES WITH SEQUENTIAL TRANSFERS

ANDREW KOSENKO

Department of Economics and Finance, Marist College

NATHANIEL NELIGH

Department of Economics, University of Tennessee, Knoxville

Given any perfect information sequential game, if players can offer action-

conditional utility transfers to the moving player sequentially at every history

("bid" for actions), every Markov perfect equilibrium results in a utilitarian-

efficient outcome, maximizing the sum of all players’ utilities. In equilibrium

players bid "pivotally," offering just enough to change which action is the most

valuable, taking into account the bids and utilities of other players. Payoff dis-

tributions are generally non-unique (we provide a condition for uniqueness) and

exhibit weak first-bidder advantage.
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1. INTRODUCTION

In this paper we show that if players can commit to one-step-ahead action-contingent

transfers and utility is transferable, every equilibrium of an arbitrary sequential game will

result in a utilitarian-efficient outcome. More precisely, if at each node, non-moving players

are able to sequentially offer action-contingent transfers ("bids") to the moving player, any

Markov-perfect equilibrium outcome of this bidding-augmented game will always corre-

spond to the outcome that maximizes the sum of the players’ payoffs in the original game.

We find that in equilibrium players employ a sequential-pivotal bidding strategy, which
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may be of independent interest: In our construction, players bid just enough to change the

mover’s action, aware of the players who have bid already and the players who will bid

later. Rather than relying on fixed-point arguments, we provide a constructive approach

that derives the necessary bids from the value function.

Using this approach, we show that bidding on actions is sufficient to guarantee utilitar-

ian efficiency in any arbitrary sequential game of perfect information (of finite or infinite

horizon, with or without a repeated game structure) with a finite but arbitrary number of

players, assuming perfect information, continuity at infinity of utilities, and transferable

utility. This result can be viewed as a formalization of the Coase conjecture (Coase (1960))

for sequential games with perfect information, or a version of the first welfare theorem

(in that we show that an efficient outcome can be achieved through simple "decentral-

ized" transactions). The difference between our work and the classic conversation around

the Coase conjecture ((Medema (2020) provides an updated discussion) is that we use a

stronger efficiency concept (utilitarian as opposed to Pareto), and a game theoretic setting.

There are two main antecedents for our results: the work of Dutta and Siconolfi (2019)

and Prat and Rustichini (1998). Dutta and Siconolfi (2019) show that in any (finitely or

infinitely) repeated sequential two-player game with perfect information and transferable

utility, strong utilitarian efficiency (in the sense of maximizing the sum of the players’

utilities) will be achieved as long as players can contract sequentially on the next action

of the other player. We extend this result in two main ways. First, our result applies to

arbitrary sequential games, provided that the difference between the highest and lowest

possible eventual total payoffs for an individual, given an action history, must converge to

zero as the length of the action history grows to infinity (a standard "continuity at infinity"

assumption). A repeated game structure is not required, nor is geometric discounting.

Our second contribution is in extending the original result to any finite number of players.

Dutta and Siconolfi (2019) hypothesize that this is possible, but they do not go beyond two

players in their paper. While it is relatively straightforward to extend the arguments of

Dutta and Siconolfi (2019) to show that an efficient Markov perfect equilibrium (MPE)

exists with arbitrary numbers of players, additional nuance arises when characterizing all

Markov perfect equilibria in the many player case. This complexity arises from the presence

of bids for actions which are not realized on the path of play, but do have knock-on effects

on both the future bids and the future payoffs of other players. These unrealized transfers
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mean that, while efficiency is guaranteed, the distribution of the payoffs is often not unique,

due to indifferences during bidding.

Prat and Rustichini (1998) study a sequential bids common agency problem where the

principals offer conditional transfers to the agent in sequence, and the agent then takes a

single action. They find that all equilibria are efficient and that the payoff vector is not, in

general, unique. We extend this result by moving from the single action case to arbitrary

sequential games and characterizing the conditions for a unique payoff vector.

Bernheim and Whinston (1986a), introduced the original (simultaneous bids) common

agency model as a principal-agent model with multiple principals who simultaneously pro-

pose action-contingent transfer schemes, and an agent who, upon observing these offers,

chooses an action. They show that coalition-proof equilibria (a subset of all equilibria)

are efficient. They find that efficient MPE always exist in this setting. Bergemann and

Välimäki (2003) extend the (one-shot) Bernheim and Whinston (1986a) to arbitrary se-

quential games. Their results show that, again, only a subset of MPE are efficient.

In light of this history, our result can be viewed conceptually as extending the work of

Prat and Rustichini (1998) in a conceptually similar way to how Bergemann and Välimäki

(2003) extend the work of Bernheim and Whinston (1986a) (in the sense that Prat and

Rustichini’s (1998) model is a special case of ours, with a single action). One should note,

however, that the methods we use in the extension and results we come to are very dif-

ferent from those of Bergemann and Välimäki (2003). For example, in the sequential bid

space, we prove that all MPEs are efficient rather than the existence of an efficient MPE.

In addition, our result allows players to "take turns" being the agent in the common agency

game rather than having the same player be the agent each time, and we allow the avail-

able actions for the agent change arbitrarily with the history (in Bergemann and Välimäki

(2003) available actions change based on a Markovian state of the world with finite real-

izations). In addition, our uniqueness result is completely different both in what exactly is

unique (payoff vectors in our work, as opposed to strategy profiles, in existing work) and

to what this uniqueness applies (all MPE outcomes in our work, as opposed to "truthful" or

coalition-proof equilibria, in existing work).

In summary, Dutta and Siconolfi (2019) show the efficiency result for two players in

a dynamic game, while Prat and Rustichini (1998) show the result for many players in a

one-shot game. Our work generalizes both approaches by guaranteeing efficiency in a mul-



4

tiplayer sequential setting. In addition, our model also delivers an additional result: under

certain conditions, the outcome in all of these equilibria is unique (up to indifferences), but

these conditions are rare and fragile. Finally, our approach is different from the approaches

explored earlier: instead of relying on (relatively more opaque) fixed point theorems, we

explicitly derive the necessary transfers from the value function.

The extension to non-repeated infinite games is of major importance in its own right

but it should also be noted that combining games with more than two players (extending

Dutta and Siconolfi (2019)) and games with multiple sequential actions (extending Prat and

Rustichini (1998)) introduces a complexity to the bidding that is not present in either alone.

In particular, the combination creates potential sunspots issues even in finite games, as we

demonstrate with an example in section 4.3. For this reason we focus on strategies that are

Markovian with respect to past bids. The model of Prat and Rustichini (1998) and finite-

length games in Dutta and Siconolfi (2019) only need subgame perfection to guarantee

efficiency.

In the process of extending the result to many players we find an interesting effect. The

structure of the backward induction reasoning creates a type of naturally occurring se-

quential pivot effect where players who want to induce an action must bid for that action

based on the amount that the change in the implemented action alters the valuations of

later bidding players and realized bids.1 The sequential pivot in our proof resembles the

Vickrey-Clarke-Groves (VCG) mechanism, but rather than being operated by a principal,

it arises endogenously from the optimizing behavior of sequentially bidding players. The

pivot also has sequential features that are absent from the VCG mechanism—for instance,

players react to the bids of earlier bidders but to the valuations of later bidders. This asym-

metry means that earlier bidders are able to shift the burden of changing the action to later

bidders, leading to weak early bidder advantage.

The proof of our main result (Theorem 1) proceeds in three Lemmata. Lemma 2 shows

by induction that, during a bidding phase preceding an action, players will bid pivotally

relative to their value functions. Lemma 3 shows that in every action period, pivotal bidding

will lead to the action that maximizes total value across all players, as result we call "one-

1This type of strategy implicitly occurs in Prat and Rustichini (1998) and one case of it is constructed explicitly

in their "thrifty equilibrium." In contrast, we construct it explicitly for all equilibria.
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step-ahead optimality." We show this by considering the first bidder: their implemented

pivotal action maximizes the sum of the valuations. This emerges because the first bidder

does not face any existing bids, so they are only reacting to their own valuation and the

valuations of the other players. Finally, Lemma 4 shows that continuity at infinity and one-

step-ahead optimality (Lemma 3) guarantee the efficiency of the outcome of the whole

game.

Our result illustrates how a simple modification to a strategic situation—that is, the in-

troduction of bids for actions—may dramatically improve outcomes. More broadly, the

"bidding for efficiency" approach elucidates the limits of how efficiency in games may be

reached, by using contracts that are "simple" in the following senses: i) bilateral; ii) one-

period-ahead; iii) decentralized and uncoordinated; and iv) explicit (no "black box"), at

least relative to directly contracting on outcomes. Such bilateral payments may arise any-

time transfers are possible and actions are contractible (i.e. under the minimal requirement

that bilateral contracts on actions are enforceable).

We present three examples illustrating our results. In section 2 we present a three-player

"centipede" example to build intuition. In section 3 we go through an infinite game with

continuous at infinity payoffs that does not have a repeated game structure or geometrically

discounted payoffs—an "infinite centipede," that is covered by our theory. Neither of these

examples is covered by existing approaches. In section 4.3, we show by a counterexample

how efficiency may fail without Markovian bids; this example also illustrates how bids for

actions which are not taken — a feature that is absent from two-player settings — matter,

and complicate the construction.

We also provide several results on the properties of this mechanism: there is weak early

bidder advantage, and payoffs are generically non-unique. We provide necessary and suffi-

cient conditions, checkable using an algorithm, for uniqueness of the payoff vector. Lastly,

we consider what happens when utility is imperfectly transferable in the sense that benefi-

cial "money" can be exchanged, but the value of money is potentially non-homogenous and

non-linear. We find that efficiency is guaranteed only in the narrowest two-player one-shot

case.

The paper is organized as follows: Section 2 presents the notation, definitions, and equi-

librium concept. Section 3 discusses an infinite-horizon example in detail. Section 4 states

and proves the main result, while section 5 discusses features of the "bidding for actions"
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FIGURE 1.—Finite centipede with three players

mechanism—(non)uniqueness of payoffs, weak first-mover advantage, and the Pareto prop-

erties of the bidding-augmented game relative to the original game. Section 6 probes the

limit of the assumption of transferable utility, and studies a one-period model with imper-

fectly transferable utility. The literature review is in section 7. Proofs are relegated to the

appendix, with the exception of the proof of the fact that players bid pivotally (Lemma 2),

which is illustrative and, thus, appears in the main text.

2. MODEL

Before diving into definitions, we first illustrate the workings of the bidding mecha-

nism,2 in a relatively simple, three-player setting of one well-known dynamic game—the

centipede (Rosenthal (1981)). In section 3 we present an infinite-horizon example with two

players.

Consider the finite centipede with three players and with the payoffs illustrated in figure

1.3 As usual, all subgame perfect equilibria involve stopping immediately. However, the

utilitarian-efficient outcome is to continue at all nodes, which yields (6,6,6) for the players.

Illustrating our main result, if the players are allowed to bid for actions, all equilibria of the

bidding-augmented centipede become ones where all players continue at every opportunity,

yielding the utilitarian-efficient outcome.

More explicitly, suppose that nonmoving players bid in numerical order. In one equilib-

rium, at t6, P2 (a non-moving player) will bid one unit of utility to P3, to incentivize them

to play C . The payoffs are now (6,5,7), inducing P3 to choose C . At t5 and earlier no bids

2While we use the term "bidding mechanism," this is not a true "mechanism" in the sense of mechanism design.
3Neither of the examples we develop are covered by the work of Dutta and Siconolfi (2019) or Prat and Rusti-

chini (1998); one of our examples has three players and the other one has a non-repeated game structure, and both

have sequential moves.
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will take place since P2 (and the other players) already has enough of an incentive to play

C . In fact, the bid at t6 is the only necessary bid: Here, a single transfer is enough to get to

efficiency.

We now formally introduce our setup.

2.1. Notation

Let Γ = {N,H,P,A,πi} be a given extensive-form game with perfect information, finite

actions at each node, and no chance moves, where

1. The set of players is N = {1,2, . . . ,N}.

2. We work directly with action histories. Let ht = {a1, a2, . . . , at} denote the history

of the actions until time t. We interpret the number of actions in a history as a "time

period." Let Ht denote the set of all histories with t elements, and let H= ∪Ht denote

the set of all possible histories.

3. There is a player function P :H→N specifying the player who moves at ht, and we

refer to P (h) if the time period is arbitrary or clear from the context.

4. The set of actions for player i after action history ht is given by a correspondence

Ai(ht), or simply A(h), if the moving player and time period are clear. After an action

at+1 we write the evolution of the action history as ht+1 = (ht, a
t+1).

5. Denote by Z the set of terminal histories—that is, either finite histories that have no

further successors, or infinite histories. For every terminal history, there is a vector of

payoffs πi : Z → R for each player if that history is reached; thus, we assign payoffs

to all terminal histories ex-ante. We assume that πi(z) is uniformly bounded in mag-

nitude. Note that we treat any two infinite histories as the same history when they only

diverge after an infinite number of actions.4 Given continuity at infinity (see upcoming

definition 1), this assumption does not impose any restrictions on payoffs.

We also assume that the utility function is continuous at infinity:

4One can think of this assumption as imposing a notion of distance on the space of action histories that ensures

that the distance between histories that only differ in actions that are "far into the future" converges to 0 as the

differences get farther into the future. This assumption is needed because if (A,A,A, ...) ̸= (A,A,A, ...,A,B),

then history (A,A,A, ...) would have a successor history and would not be terminal.



8

Definition 1—Continuity at infinity. A utility function is continuous at infinity if, given an

ϵ > 0 there exists t(ϵ) such that for action histories ht and h′t that agree up until time t, we

have

max
z∈Z(ht),z′∈Z(h′t)

|π(z)− π(z′)|< ϵ (1)

where Z(h) is the set of all terminal histories that follow action history h. This is a

rephrasing of the standard "continuity at infinity" assumption for our setting; the meaning

and implications (i.e., that payoffs "far" into the future are not too important) are standard.

2.2. The Bidding-Augmented Game

Given a dynamic game with perfect information, we augment it such that immediately

before each action is taken, each non-moving player (in a sequence) may offer the player

moving at that action history a set of non-negative transfers, contingent on the action the

moving player takes. We call this the bidding phase. We refer to the players in the bidding

phase other than the moving player as bidders; of course, bidders are also players, but

we make the distinction to emphasize where a player is in the process. We let utility be

quasi-linear and transferable, so bids are in terms of utility.

For any Γ, we construct the version with bids as follows: ΓBA = {N, Ĥ, P̂ , Â, πi}, which

is a bidding-augmented game of Γ. The set of players is the same. The histories of ΓBA are

elements of the set Ĥ and are constructed by taking the histories of Γ and adding to each

action history a bidding phase that precedes the action phase.

The augmented player function P̂ is constructed from P by allowing players to offer

action-contingent utility transfers to the mover specified by P when it is their turn to do so.

These bids occur in some fixed order during the augmented histories that immediately pre-

cede the action. For simplicity of notation, we assume that at each action history ht players

bid in the order {1,2,3, P (ht)− 1, P (ht) + 1, . . .}; this assumption may be generalized to

an arbitrary bid order without changing any of the logic in this paper. The order can even

be stochastic as long as a bidding player knows who has already bid and who will bid after

them.
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The augmented action and bid correspondence Â is constructed similarly, giving the

bidders options to bid before the actions. We keep the set of available actions compact

by assuming that a player’s bids must be weakly less than the difference between their

supremal and infimal potential payoffs. This assumption is purely technical and without

loss of generality, as no player will ever want to make bids greater than this amount.

We allow players to decline transfers, although because the transfers are non-negative

(and only strictly positive transfers that are "large enough" will play a role), we do not

explicitly incorporate this choice into the analysis.

Histories, Strategies, and Equilibrium

The bid of player i at an action history ht for action aj is denoted as bi(aj ;ht, b<i). This

bid is a contingent payment offered by the bidding player, i, to the mover, P (ht), to be

paid out if the mover takes action aj . Since Player i’s bid depends on the action history and

the bids that have already been made (which we denote by b<i), we generally drop these

arguments and refer to bti(aj) to improve readability.

The profile of player i’s bids for all actions at a history is bti. Bidding players may bid

positive amounts for multiple actions. Denote by ai(ht) = {a(ht)|P (ht) = i} the action of

player i at action history ht if that player is the mover at that node.

Bids on previous actions are sunk from the point of view of the current mover or bidder.

As such, we focus on histories that do not include these older bids.

Formally, the relevant history in the bidding-augmented game is a set rt = (hτ ,{bi}i∈oτt−τN
),

where t= τN + |{bi}i∈N\P (ht)| and oτt−τN are the first t− τN elements of a re-ordering,

oτ , of {1,2, ...,N} \ P (ht) (specifically it is the order of bidders at history hτ ). The space

of all such histories is denoted by R.

Note that (with a small abuse of notation) the histories of Γ are relevant histories of Γ̂.

This means that we can continue to use the same payoff function, πi(z), in our discussion

of the bidding-augmented game. It also means that any function that can be applied to a

relevant history can also be applied to a history composed of only actions.

We define the net realized bid function for a given player as

ni(ht) =


∑

j b
t
j P (ht) = i

−bti P (ht) ̸= i
(2)
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If player i is moving at ht, the net realized payoff function gives the total bids that other

players have given to player i for the realized actions they took, and if player i is not

moving, ni(ht) is the total amount i paid out to the mover.

A player’s final payoff from a terminal history z of length t is given by

πi(z) +
∑
s≤t

ni(hs) (3)

where here the hss are sub-histories of z.

Definition 2—Strategies. A strategy for player i in the augmented game is

σi = σi(rt) = (bi(rt), ai(rt)),∀rt ∈R (4)

A strategy specifies a player’s bid every time they get to bid and a player’s move every

time they get to move (as a function of relevant histories), with the convention that player i

bids 0 during their move and a bidder takes a null action during another player’s move.

Due to the structure of relevant histories, the strategy σi(rt) may depend on the action

history, ht, in rt and on the bids "within" a period (b−i(ht)) but not bids from before the

last action. By using relevant histories, we implicitly assume that bids and actions are in-

dependent of the (payoff irrelevant) history of the bids made before the previous action. As

such, our strategies are Markovian with respect to older bids.

Let σ = {σ1, σ2, . . . , σN} be a strategy profile. A strategy profile σ in ΓBA generates

a distribution over actions and bids, γ(σ), leading to a distribution over realized bids and

terminal histories. Before we define an equilibrium, we formally define the value function

for each player. Let

Vi(rt, σ) = Eγ(σ)

πi(z) +∑
s≥τ

ni(hs)|rt

 (5)

be the value function for player i at time t under strategy profile σ, with the understanding

that the actions ai(rt) and the bids bj(rt) are determined according to the strategy profile

σ. The joint value function is

V (rt, σ
∗) =

N∑
i=1

Vi(rt, σ
∗) (6)
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Now we can define the equilibrium concept:

Definition 3—Equilibrium. A Markov-perfect-bidding equilibrium (MPBE) is a strategy

profile σ∗ such that for each player i, for each t, and for every action or bid c∗ that occurs

with positive probability, we have

c∗ ∈ arg max
c∈Â(rt)

VP̂ (rt)
((rt, c), σ

∗) (7)

where (rt, c) is understood to mean the relevant history rt followed by (action or bid) c.

This type of equilibrium is Markovian with respect to older bids because, as previously

mentioned, our definition of strategies uses histories that discard those elements. This pre-

vents any potential sunspots based on older bids, although action-based sunspots are still

allowed. The importance of being Markov-perfect with respect to bidding is demonstrated

by a counterexample in section 4.3. As a concept, Markov perfect bidding equilibrium is

more general than traditional Markov perfection, because it allows for sunspots in non-bid

actions and recent bids, but it is still less general than subgame perfect equilibrium.

In addition to the equilibrium, we are also concerned with the efficiency of the outcome.

Definition 4—Efficiency. Our notion of efficiency is π̄(z) =
∑N

i=1 πi(z). Call a history

z∗ ∈ Z with the property that π̄(z∗) ≥ π̄(z′),∀z′ ∈ Z a strongly efficient history and the

outcome of said history a strongly efficient outcome.

Such an outcome z∗ is the outcome that maximizes the sum of the payoffs of the

players—that is, it is the best outcome in the utilitarian sense. We suppose that the util-

itarian outcome is desirable and we work under this assumption to illustrate the efficiency

result.

3. EXAMPLE: AN INFINITE CENTIPEDE

Here we illustrate in detail the workings of the bidding mechanism and the results. Con-

sider an infinite version of the two-player centipede, depicted in figure 2. We modify the

payoffs to satisfy several key properties from the finite version. Namely, the payoff from

stopping is always greater for the moving player than any possible payoff from continu-

ing; in addition, the sum of the payoffs is increasing as the game proceeds, the sum of the

payoffs from continuing forever remains greater than the sum of the payoffs from stop-

ping, and the payoffs from stopping fall (thus preserving the incentive to end the game at
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first opportunity); finally, payoffs are continuous at infinity. Thus, the fundamental tradeoff

present in the centipede is preserved.

1

(
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4 ,
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)t2
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)t3

(239256 ,
271
256)

t4

21
. . . (1,1)

FIGURE 2.—An infinite centipede

In general, the payoff structure for terminal nodes is as follows:

(π1(t), π2(t)) =


((

1−
(
1
4

)t)
+
(
1
2

)t)
,
((

1−
(
1
4

)t)−
(
1
2

)t)
for t odd((

1−
(
1
4

)t)−
(
1
2

)t)
,
((

1−
(
1
4

)t)
+
(
1
2

)t)
for t even

(8)

We assign payoffs (1,1) to the infinite history (C,C,C,C...). If we allow players to bid

for actions, the outcome changes drastically (here all Nash equilibria of the game without

bidding also involve stopping immediately). If player 2 transfers 7
16 at t1 to player 1, player

1 will play C at t1, instead of stopping. Onward, at t2 P1 will bid 19
64 , at t3 P2 will bid 43

256 ,

and so on.

The general bid to the moving player (only the non-moving player gets to bid) is given

by:

bt = 1
1

2

(
1

2

)t

− 1
1

4

(
1

4

)t

(9)

With these bids, the play proceeds forever, with each player continuing when they get a

chance to move.

Besides illustrating the fact that allowing players to bid will result in the utilitarian-

efficient outcome, this example has several notable features. First, the bidding mechanism is

manifestly nontrivial—there are an infinite number of on-path transfers that are determined

by the payoffs in the underlying game. It can be checked that the value from continuing is
5
4 for player 1 and 3

4 for player 2; this value remains constant as the play proceeds. Second,

players gain enough utility from the efficient actions to make up for the costs of the bids
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needed to achieve them. Thus, not only does there exist a sequence of bids that alter the

actions to achieve efficiency but this sequence is optimally attainable based on the payoffs

from the efficient outcome.

4. MAIN RESULT: TRANSFERS IMPLEMENT THE UTILITARIAN OUTCOME

With the preliminaries out of the way, we now present our main result.

THEOREM 1: The outcome of every MPBE of ΓBA results in a strongly efficient outcome

z∗ of Γ.

In other words, strikingly, allowing for conditional transfers results in utilitarian effi-

ciency in a large class of games. For instance in a sequential perfect information version of

the prisoner’s dilemma, Theorem 1 shows that with transfers (and without communication)

the outcome would be to cooperate. Similarly, the outcome in the centipede with transfers

would be to continue for as long as necessary.

We prove this result in several steps. First, we show (in Lemma 2) that players have an

incentive to bid enough to implement the efficient action ("pivotally") in equilibrium. Then

we show (in Lemma 3) that this style of bidding guarantees one-period-ahead efficiency

with respect to the value function. This is efficiency "within" a period. Finally (in Lemma

4) we show that one-period-ahead efficiency along with continuity at infinity guarantees

overall efficiency. This is efficiency "across" periods. Taken together, Lemmas 3 and 4

prove Theorem 1.

4.1. First Step: Pivotal Bidding and One-step-ahead Optimality

In this section we show that non-moving players will have an incentive to bid for the

utilitarian-efficient action at every action history.

To that end, fix an action history, ht, and consider the incentives of the bidding players

between ht and ht+1. For the purposes of this section, the action components of the history

will remain fixed and, as such, we suppress the dependence of the various objects on ht

whenever possible (specifically in the value function).

We also fix σht+1 , the strategy profile continuing after the next action (the dependence

of the value function implicitly depends on σht+1 but we do not include it in the notation



14

since this is always implicitly true for value functions). This allows us to treat the value of

various ht+1s as endpoints with defined values.

To state and prove Lemma 2, we first need to define the running total of the bids function,

the future bidder value function, and the notion of pivotal bidding. Then we show that the

players do, in fact, bid pivotally.

Given a fixed set of bids {bk}k=1,2,...,i−1 and a strategy profile σ, we define the running

total function during the bid of player i for action a

Ti(a) = VP (ht)(a) +
i−1∑
k=1

bk(a) (10)

Note that the mover’s (player P (ht)) value function VP (ht) is included in the running

total because the mover’s value of the action contributes to their preference for the action

similar to the way the bids do. Also, we define the future bidder value function during the

bid of player i

Fi(a) =
N−1∑
k=i+1

Vk(a) (11)

as the sum of the value functions for all future bidding players; note that the running total

function includes the value function of the mover and the bids of the preceding bidders,

while the future bidder value function includes the value functions (as opposed to the bids)

of the future bidders.

Let ãi = ãi(Ti, Fi) = argmaxa Ti(a) + Fi(a) be the leading action during the move of

player i.

Definition 5—Action-pivotality. Player i is action-pivotal if there is an action a∗ ̸= ãi

such that

a∗ ∈ argmax
a

Vi(a) + Ti(a) + Fi(a) (12)

Thus, a player is action-pivotal if the leading action without the value of this player is

different from the leading action with this player included. If there are multiple possible

a∗s, the pivotal player picks one arbitrarily; note that a tie breaking assumption at this step

is not needed.
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Definition 6—Pivotal bidding. Player i bids pivotally if they bid

bi(a
∗) = Ti(ãi) + Fi(ãi)− (Ti(a

∗) + Fi(a
∗)) (13)

for action a∗, if it exists, and

bi(a)< Ti(ãi) + Fj(ãi)− (Ti(a) + Fi(a)) (14)

for a ̸= a∗.

Pivotal bidding plays a key role in our approach. It allows us to explicitly construct the

bids that are optimal in equilibrium.

LEMMA 2—Pivotal bidding in equilibrium: In any MPBE of ΓBA all players bid piv-

otally.

This means that all players bid enough to shift the leading action if their preferences

make them pivotal in determining the leading action. They can bid any amount for options

that are not the leading actions as long as they do not bid so much that the action and bid

are realized and they do not increase the amount they must bid to implement the pivotal

action.

Note that under this Lemma multiple bidders may be action-pivotal but it is not possible

for multiple players to be pivotal for different actions.

PROOF: We prove this by (backward) induction on the set of bidders, beginning with

the last bidder in a bidding phase. Let N be the index of this player.

Mover: The mover will pick the action that maximizes

VP (ht)(a) +
∑

k ̸=P (ht)

bk(a) (15)

Last Bidder: Player N ’s utility only depends on the action they implement and the

required bid. Suppose ãN is the leading action before player N ’s bid. Player N can imple-

ment an action a by bidding

bN (a) = TN (ãN )− TN (a) (16)
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So Player N ’s optimization problem becomes

maxa VN (a)− TN (ãN ) + TN (a)︸ ︷︷ ︸
=bN (a)

=

= VN (a)− VP (ht)(ãN )−
∑N−1

k=1 bi(α̃N ) + VP (ht)(a) +
∑N−1

k=1 bi(a)

(17)

the solution of which is identically equal to the a∗N defined by action-pivotality because

there are no future bidders and, therefore, no Fi term and because

argmax
a

VN (a)− VP (ht)(ãN )−
N−1∑
k=1

bi(α̃N ) + VP (ht)(a) +
N−1∑
k=1

bi(a) (18)

= argmax
a

VN (a) + VP (ht)(a) +
N−1∑
k=1

bi(a)) (19)

Player N can freely bid for other actions as long as they are not implemented and do not

raise the cost of implementing a∗N . As such, player N will not bid for ãN , nor will they bid

such that TN (aj) + bN (aj)≥ TN (ãN ) for any aj ̸= a∗N . Thus, player N will bid pivotally.

Inductive step: Given that all future players will bid pivotally (by the induction assump-

tion), we show that player j = 1, . . . ,N − 1 will also bid pivotally in the sense that all

optimal actions coincide with the actions determined by pivotal bidding.

Again, j’s utility only depends on the action they implement and the required bid. If (by

the inductive hypothesis) all future players bid pivotally, j can implement an action a by

offering

bj(a) = Tj(ãj) + Fj(ãj)− Tj(a)− Fj(a) (20)

Thus, j’s optimization problem becomes

max
a

Vj(a)− bj(a) = max
a

Vj(a)− Tj(ãj)− Fj(ãj) + Tj(a) + Fj(a) (21)

which is optimized at a∗j , again, as before, by the definitions of T and F . Player j can

freely bid for other outcomes as long as they are not implemented and do not raise the

cost of implementing a∗j . As such, they will not bid for ãj , nor will they bid such that
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Tj(aj) + Fj(aj) + bj(aj)≥ Tj(ãN ) + Fj(ãj) for any aj ̸= a∗N . Therefore player j will bid

pivotally. Q.E.D.

We have thus shown that all players bid pivotally in equilibrium. Given such pivotal

bidding, we establish the next result—the fact that in equilibrium individual optimization

will implement the action that maximizes the one-step-ahead joint value function, a result

we call "one-step-ahead optimality."

LEMMA 3—One-step-ahead optimality: In any MPBE of the bidding-augmented game

ΓBA, the action implemented by the bidders is the action maximizing the joint value func-

tion at every step:

V̄ (ht, σ
∗) = max

a∈A(ht)
V̄ ((ht, a)︸ ︷︷ ︸

ht+1

, σ∗) (22)

For the proof, see the appendix. The proof works by looking at the first bidder and show-

ing that they will implement the action that maximizes the total value function. Lemma 3

shows that in equilibrium pivotal bidding results in bidders (and movers) acting in a way

that maximizes the one-step-ahead joint value function. Thus, pivotal bidding keeps the

implemented actions on track to implement the utilitarian outcome.

4.2. Second Step: One-Step-Ahead Optimality is Equivalent to Global Optimality

We finish the proof with the following Lemma:

LEMMA 4—One-step-ahead Optimality is Equivalent to Global Optimality: Suppose

that payoffs are continuous at infinity and equation (22) holds. Then we have

V̄ ∗(∅, σ∗) = max
z

π̄(z) (23)

For the proof, see the appendix. The proof works by using continuity at infinity and

Lemma 3 to bound the value function in a way that converges as t goes to infinity. This

Lemma guarantees the efficiency of any outcome of the MPBE and finishes the proof of

Theorem 1.
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FIGURE 3.—A Counterexample with Non-Markov Strategies

4.3. A Counterexample with Non-Markov Strategies

Let us now illustrate how things can go wrong if bidding strategies can be conditioned on

bids in previous bidding periods - that is, if the bidding strategy is not Markov with respect

to past bids. Consider the following three-player game with two periods, where player 3

takes an action at both periods. At each node player 1 bids first, then player 2.

Consider the following bidding strategies:

Player 1:

• If player 2 bids a non-zero amount in the first bidding phase, and action A is chosen in

period 1, bid 3 for D in period 2.

• Otherwise, bid nothing.

Player 2:

• Bid nothing in in the first bidding phase.

• Bid 1 for C in the second bidding phase after A if they (player 2) did not bid in period

1

• Bid 4 for C in the second bidding phase after A if they (player 2) bid a non-zero amount

in period 1

• Bid 2 for C in the second bidding phase after B regardless of previous bids.
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Player 3:

• Play the value maximizing action in both periods.

The result is (B,C) with a payoff of (0,2,2). This is less efficient than (A,C) which has

a total payoff of 5. To see that this is a subgame-perfect equilibrium note that player 1’s bid

is not realized, so he is doing as well as he can (0 payoff). Player 2 and player 3 are both

bidding and acting in accordance with their value function.

The trick here is that V (B) = (0,2,2) consistently but the value of V (A) is inconsistent.

V (A) = (0,4,1) if player 2 does not bid in the first bidding phase but V (A) = (0,1,4) if

player 2 does bid. Player 2 would like to bid enough to cause Player 3 to play A under

normal circumstances. However, thanks to player 1’s bid-based sunspot-style strategy, the

process of bidding makes A worse than B for Player 2. There is no way for player 2 to

access his desired value from A without "destroying" it. Since B is achievable by Player 2

without bids, no bidding takes place in period 1.

This example contrasts significantly with the model of Dutta and Siconolfi (2019) where

uniqueness breaks down for non-Markovian-in-bids (what they call "action perfect equilib-

ria") strategies only in the infinite horizon case. It also contrasts with Prat and Rustichini

(1998) where all SPE are efficient. Only in environments with more than two players and

more than one period does this difficulty arise.

The difference comes from the fact that bringing in more than two players causes non-

unique optimal moves to be common, often with potential to influence the payoffs of other

player. If there are two or more periods, this multiplicity can allow current bids to impact

the value function indirectly, breaking down the incentives for efficient bidding.

5. PROPERTIES OF THE BIDDING MECHANISM

We turn now to the features of the sequential pivot bidding mechanism and show that

it satisfies a number of important properties: weak first-mover advantage (in corollaries 1

and 2), and generic non-uniqueness of payoffs (in section 5.2). Proposition 1 characterizes

when payoffs are unique.

5.1. Order of Bids and Distribution of Payoffs

We start by discussing the distribution of the payoffs and particularly how it is impacted

by the exogenously specified order in which the players get to bid. While every order of
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bidders yields the utilitarian-efficient outcome, the order does influence the distribution of

the bids (and therefore, of the final payoffs).

The non-uniqueness of the payoffs makes it difficult to give general statements about

the payoff distribution, so we consider slightly narrower statements in this subsection. The

intuition from these results does apply broadly.

Consider, first, a case where the bidders’ preferences are aligned in the sense that there is

an action that they all prefer over all other actions. Assume that the mover wants a different

action to avoid a trivial outcome with no bids. In this case, there will be (weak) first-

mover advantage—bidding earlier rather than later is better. The intuition is that because

the preferences are aligned, the earlier bidder(s) can "shift" the burden of implementing the

preferred outcome to later bidders.

COROLLARY 1: Consider a single-move game where the mover (player 0) wants one

action a and all bidders want a′ ̸= a. Moving a player to an earlier bidding position while

keeping the order of the bids otherwise identical will weakly decrease that player’s bid.

This corollary follows from Theorem 1 and guarantees a weak first-mover advantage. If

the incentives of the bidders are misaligned, the bid order has a more complex effect of

changing the degree and type of non-uniqueness. We discuss uniqueness in more detail in

the following subsection. Here, we present a simple case:

COROLLARY 2: Consider a single-move game where the each player only receives a

payoff from one action and no two players receive a payoff from the same action. The only

bidder to get a payoff is the one whose preferred action benefits them the most. If they are

the first bidder, they will pay the value of the player with the second highest value. If they

are the last bidder, their payoff could take any value between zero and their value for their

preferred option.

This corollary also follows from Theorem 1. The result shows that, under certain condi-

tions, the sequential bidding mechanism can resemble a second price auction, but changing

the order of the bids can introduce a great deal of non-uniqueness.

Payoffs are unique only under stringent conditions, which we turn to now.
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5.2. Uniqueness of Payoffs

In this section we establish necessary and sufficient conditions for realized bids to be

unique. This result shows that uniqueness of payoffs is a very fragile property.

Changing the bidding order will generally change the set of possible distributions of the

payoffs, as discussed above. In this section, we fix the order of the bids at each action

history and only consider the payoff non-uniqueness arising from multiple equilibria with

different realized bids.

We begin with some definitions: Take any history ht, a MPBE σ∗(with specific properties

we will define shortly), and an associated set of value functions Vi (ht+1, σ
∗). Consider the

bids between ht and ht+1. Suppose that in this equilibrium σ∗ each player only bids as

required and makes no optional bids (this equilibrium exists in all cases). We denote the

resulting bids for the optimal action (a∗) as b̂i, for convenience. We call the resulting leading

actions âi. Next, we define the value of player i’s leading action in this equilibrium:

mi = T̂i(âi) + Fi(âi) (24)

where

T̂i(âi) =

VP (ht)(âi) +
∑i−1

j=1 b̂i âi = a∗

VP (ht)(âi) âi ̸= a∗
(25)

and, as before, VP (ht) is the value function of the moving player. Note that Fi(a) is inde-

pendent of the strategy profile.

Finally, we define a running total limit:

T̄i(a) = max
j<i

mj − Fj(a) (26)

We have the following result:

PROPOSITION 1: The realized bids are unique between ht and ht+1 if and only if T̄i(a)+

Fi(a)≤ mi,∀i, a.

For the proof, see the appendix. Payoffs are unique in a sequential game if this condition

holds every pair of consecutive sub-histories along the efficient history, since it’s an "if and

only if" condition.
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Essentially the result works as follows: a player sometimes has slack that lets them make

unrealized bids, as long as they can do so without influencing the amount that they have

to pay to implement their optimal action. This slack is what creates non-uniqueness. The

proof looks at how much slack it is possible for each player to have and then checks whether

there is enough to cause uniqueness to fail. The slack comes from the fact that players are

willing to bid for the optimal action up until the running total plus their own result reaches

a certain threshold. If the running total exceeds this threshold then that means that the given

player does not need to bid for the leading action in that equilibrium and so they also have

some freedom to influence the payoffs of others without influencing their own payoff.

As mentioned, this result shows that the uniqueness of payoffs is very fragile. For ex-

ample, it implies that if the leading actions are ever different along the equilibrium path

(ãi ̸= ãi+1) then the equilibrium vector of the realized bids is not unique. This, in turn,

means that if any player is not action-pivotal, uniqueness immediately fails.

In contrast, it is very difficult to guarantee unique payoffs. If there are only two actions

and all players are action-pivotal, that is sufficient, but this is a very special case.

5.3. Ranking of Equilibria

Let us now briefly discuss how payoffs in Γ are related to payoffs in ΓBA. While is it

trivially weakly optimal to participate in bidding in the bidding-augmented game (given

that one can bid zero), it is not true that a player will always want to participate in the

bidding augmented game (versus playing the underlying game without bids) because the

outcome of the bidding-augmented game does not always Pareto-dominate the equilibrium

outcome of the underlying game.

However, participation in the bidding-augmented game can be guaranteed to provide

Pareto improvement in the following way: suppose that before playing either Γ or ΓBA,

i) each player can choose whether to veto allowing bids during the main game5 and ii)

players can bid for each other player’s action during the veto stage. It can be shown that

the outcomes of this version of the game with bidding on vetoes will Pareto dominate the

outcomes of Γ. We omit the proof as it is largely trivial (applying Theorem 1 twice).

5Thus, if any one (or more) player(s) chooses to not participate in ΓBA, all players play Γ.
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5.4. Discussion of Applications

Our main focus in on the theoretical result, but we turn now - briefly - to applications. The

first is obvious enough to be almost trivial: Extensive-form games of perfect information

are used throughout economics, particularly in applied game theory and empirical industrial

organization (for instance, Selten’s "chain store" game, Stackelberg competition, dictator

games, and public good provision games). Often the equilibria of these games are inefficient

(as would be the case, for instance, in an extensive-form perfect information analogue of

a prisoner’s dilemma), and the question becomes how to get to the efficient equilibrium.

Our result implies that if transfers and contractible actions are available, this is all that is

necessary. For instance, in a repeated game of entry with an incumbent and a series of

potential entrants, if transfers are available, all the modeler has to do is determine what the

utilitarian-efficient outcome is; our result ensures that the efficient outcome will prevail,

regardless of other features (such as the number of entrants, periods or actions).

The main application of Dutta and Radner (2004) is enforcement of climate change

treaties and the main application of Prat and Rustichini (1998) is contributions to a politi-

cian who will make a policy decision (i.e. "lobbying"). Our result immediately applies to

these two settings as well. With regard to the latter setting, our result applies to a broader

class of lobbying settings, including those where decisions might be taken sequentially

(say, first in a lower house of a legislature, then in an upper house, and then endorsed by

the executive), repeated instances of lobbying efforts, or lobbying different politicians.

6. IMPERFECTLY TRANSFERABLE UTILITY: MONEY IN THE UTILITY FUNCTION

The discussion so far has focused on a setting of transferable utility. While realistic in

many applications, this assumption may not hold in certain important settings. This natu-

rally leads to the question, will bidding for actions guarantee efficiency when utility is not

perfectly transferable? To address this question we now present a version of our main result

for a setting of imperfectly transferable utility (ITU), where agents’ utilities include trans-

fers ("money") potentially non-linearly. We state the result for the case of two players—

one mover and one bidder. The restriction to two players and one action is necessary—

counterexamples exist with two or more bidders or multiple sequential actions.

In this case we only consider a simplified game that has one actor who acts once and

whose actions impact themselves and one other player. Augmenting this game gives the
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u1(a1,0)u1(a2,0)

C(a1)
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(u∗1(a2, b2(a2)), u
∗
2(a2, b2(a2)))

= u1(a2, b2(a2))− u1(a1,0)

FIGURE 4.—The ITU case with two players. The equilibrium of the bidding-augmented game remains Pareto

efficient. In this figure, action a1 is the default action, which we denote in text by ad.

other player an opportunity to bid on actions using money; we (naturally) assume that

utilities are increasing in money.

PROPOSITION 2: The outcome of the bidding-augmented version of the simplified game

with ITU is Pareto efficient.

PROOF: The argument is geometric, as developed in figure 4. Without loss, suppose that

the mover is player 1 (with a utility function u1(a, b) and the bidding player is player 2

(with utility u2(a, b). The first player’s utility is increasing in b for b > 0, while the second

player’s utility is decreasing in b over the same range.

Consider the utility space curves for each action, C(a), which contain all points (u1, u2)

such that u= u1(a, b) and u2 = uB(a, b) for some y. All of the curves C(a) are downward

sloping, since transferring money improves one player’s utility at the cost of the other. Call

the collection of all points on all curves P . Define the default action ad = argmaxa u1(a,0)

and further define u∗1 = u1(a
d,0). Then, the implemented option will be (u∗1, u

∗
2), where

u∗2 =maxa{ua2 : (u∗1, ua2) ∈ P}.
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Since all of the curves are downward sloping, this is a Pareto-dominant point as long as

no C(a) has its most upper-left point to the upper right of (u∗1, u
∗
2). We show that this would

lead to a contradiction.

The most upper-left point of each C(a) is the point (u1(a,0), u2(a,0)). If a curve begins

to the upper right of (u∗1(a2, b2(a2), u
∗
2(a2, b2(a2))), in the region shaded light gray, this

would imply that for some a′ such that u1(a′,0)> u∗1 = u1(a0,0), which is a contradiction.

Q.E.D.

7. LITERATURE REVIEW

As discussed in the introduction, our work contributes to several strands of the literature,

chief among them the work on dynamic games with transfers and the work on "efficiency."

The work of Prat and Rustichini (1998), Dutta and Siconolfi (2019), Dutta and Radner

(2023), and Jackson and Wilkie (2005) are the closest to our approach. Having already

discussed the link with Prat and Rustichini (1998) and Dutta and Siconolfi (2019) in the

Introduction, we now focus on the others.

The work of Dutta and Radner (2023) also shows that adding transfers to an infinitely

repeated game implements the utilitarian optimum. However, Dutta and Radner (2023)

focus on a specific important game based on climate change negotiations with a state vari-

able representing greenhouse gasses. Their focus is on the interpretation of their model—

enforceability of climate change treaties.

Jackson and Wilkie (2005) allow their arbitrary number player to make binding contin-

gent side payments before the underlying game is played. Crucially, and akin to Kalai and

Kalai (2013), they focus on simultaneous-move games and simultaneous offers. The equi-

libria in their model may be inefficient (in fact, transfers may destroy all Pareto-dominant

Nash equilibria of the underlying game with two players). The essential reason for the

divergent conclusions (setting aside the modeling differences) is that, while in both the

Jackson and Wilkie (2005) model and our work players can use transfers to internalize ex-

ternalities, the use of simultaneous transfers (as opposed to our sequential approach) creates

room for profitable deviations in the transfer phase, which undermines efficiency.

Similarly (and in contrast to our results) Ellingsen and Paltseva (2016) show that the

Coase theorem need not hold in a fixed simultaneous-move game with N > 2 players, pre-

game agreements to participate, and endogenous transfers. The reason is that (unlike in our
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model) if some players commit to neither give nor receive transfers, the remaining players

players still play the transfer-modified game; this creates the potential for inefficiency.

Goldlücke and Kranz (2012) study a model that is related in spirit: adding transfers (as

well as potentially "burning money" - lowering one’s own payoffs) to a model of infinitely

repeated games with imperfect public monitoring. In their model (as in ours), the transfer

and action stages alternate, although the differences are quite significant - infinitely re-

peated games with imperfect monitoring are (obviously) not games of perfect information,

and furthermore, in their setup, players act and choose transfers simultaneously. In such a

model, equilibria may fail to be efficient, which is due in part to the possibility of burn-

ing money, and in part to the limited enforceability of transfers. Bernheim and Whinston

(1986b) study a common agency model with potential incomplete information (an agent,

whose action is unobserved), in which all equilibria are "efficient" (in their, different, sense

of implementing an action at the lowest cost; different actions may be implemented in dif-

ferent equilibria, and the Pareto ranking of these is ambiguous in general); under some

condition there exist equilibria that are Pareto efficient (being strong Nash equilibria).

Our work also has a similarity to the literature that highlights the importance of the

"pivotal" agent—the agent without whom an outcome is not obtained and with whom the

outcome is obtained. See Austen-Smith and Banks (1996) and Feddersen and Pesendorfer

(1998) for pivotal voting, Shapley and Shubik (1954) for an index of power (also based on

pivotality), and Vickrey (1961), Clarke (1996), and Groves (1973) for their VCG mecha-

nism. While our sense of pivotality is not quite the same (our pivotal bidders respond to

future values but past bids) and arises endogenously, the similarity is interesting.

APPENDIX: PROOFS

PROOF OF LEMMA 3: By Lemma 2, players bid pivotally, thus implementing action

a∗ ∈ max
a∈A(ht)

Vi(a) + Ti(a) + Fi(a) (27)

for each player i.

Note, first, that multiple bidders may be pivotal (with respect to the same pivotal ac-

tion) but the welfare-maximizing action is unique. Furthermore, different players cannot be

pivotal with respect to different pivotal actions.
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Letting P (ht) = N to simplify the notation, consider the situation from the point of

view of player 1, the first bidder at an arbitrary history ht. We have ã1 = argmaxa T1(a) +

F1(a) = argmaxa
∑N−1

k=2 Vk(a) as the leading action before player 1 bids. If player 1 is

action-pivotal, they implement the utilitarian efficient outcome.

If player 1 is not action-pivotal, they will implement ã1 and, in equilibrium, we have the

following relation:

ã1 = argmax
a

V1(a) + T1(a) + F1(a) (28)

and

V1(ã1) + T1(ã1) + F1(ã1) = V1(ã1) + VN (ã1) +
N−1∑
j=2

Vk(ã1) = V (ã1) = V (a∗) (29)

That is, ã1 maximizes the joint value function (again, if player 1 is not action-pivotal).

If player 1 is action-pivotal, they will implement an action:

a1 ∈ argmax
a

V1(a) +
N∑
i=2

Vi(a) (30)

which is again the joint value-maximizing action a∗. If there are no other pivotal players,

we are done. If all other pivotal players are pivotal with respect to a∗ and not with respect

to other actions, we are also done.

Furthermore, because under pivotal bidding it is impossible for multiple players to be

action-pivotal with respect to different actions, player 1 effectively implements the efficient

action, which stays implemented throughout bidding process.

Q.E.D.

PROOF OF LEMMA 4: We argue towards a contradiction and begin with two observa-

tions.

First, note that for any history ht, it must be that

V (ht, σ
∗) ∈

[
min

z∈Z(ht)
π(z), max

z∈Z(ht)
π(z)

]
(31)

where Z(ht) is the set of terminal histories that succeed ht .
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Second, note that by backward induction and Lemma 3, V (∅, σ∗) ≥ V (ht, σ
∗), for any

finite ht.

Turning now to the proof of the Lemma, suppose, toward a contradiction, that

V (∅, σ∗) = π(z∗)− ϵ (32)

and take any history ht. By the first observation, V (ht, σ) ∈
[
minz∈Z(ht) π(z),maxz∈Z(ht) π(z)

]
(for any strategy profile, not just in equilibrium) because the joint value function is an ex-

pectation over the outcomes in this range. Now, by continuity at infinity, choose an ϵ and

take t(ϵ) such that maxz∈Z(h∗
t(ϵ)

) π(z)−minz∈Z(h∗
t(ϵ)

) π(z) ≤ ϵ
2 . Here, h∗t(ϵ) is the history

containing the first t(ϵ) elements of z∗. Trivially,

V (h∗t(ϵ))≥ π(z∗)− ϵ

2
(33)

Furthermore, since h∗t(ϵ) is finite, by the second observation we must also have

V (∅, σ∗)≥ V (h∗t , σ
∗)≥ π(z∗)− ϵ

2
(34)

which contradicts equation 32. Q.E.D.

PROOF OF PROPOSITION 1: We begin with a few observations. First, if realized bids are

unique, then b∗i = Ti (a
∗) + Fi (a

∗)− Ti(ãi)− Fi(ãi) and Ti (a
∗) = VP (ht) (a

∗)+
∑i−1

j=1 b
∗
j

are fixed for all equilibria. In addition, Fi (a
∗) is fixed regardless of the bidding strategies,

so a unique payoff vector guarantees that Ti(ãi)+Fi(ãi) must be the same for all equilibria

and equal to T̂i(â(i)) + Fi(â(i)).

(⇒) We first show the necessity of the condition: By pivotal bidding, optional bids can-

not exceed

Ti(ãi) + Fi(ãi)− Ti(a)− Fi(a) (35)

If the payoffs are unique, equation (33) is equal to

mi − Ti(a)− Fi(a) (36)

Thus, if the payoffs are unique, each player will bid up to a certain amount for action a:

bi(a)≤mi − Ti(a)− Fi(a) (37)
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or, rearranging,

bi(a) + Ti(a)≤mi − Fi(a) (38)

In other words, player i will be willing to bid only up until the bids plus the transfers

reach the specified level. This means that the maximum possible running total after the bid

is effectively independent of the current running total except in cases where the current

running total already exceeds the limit.

Define b̄i(a) =mi−Fi(a) as a player’s maximum running total for a given action. Under

uniqueness, the running total for a (non-optimal) action during period i can be up to

T̄i(a) = max
j<i

b̄j(a) (39)

Note that, if T̄i(a) + Fi(a)>mi for some a and i, then the payoff vector is not unique,

since it is possible for the running total for a to be T̄i(a) and this would imply that Ti(a) +

Fi(a)≥ T̂i(â(i)) + Fi(â(i)) and therefore there would be a different realized bid.

If the condition is violated for i, there is an equilibrium where player i has a different

running total plus future value for their leading action compared with the equilibrium with

no optional bids. This change in value implies a change in the realized bid, by the definition

of pivotal bidding. Hence, the set of realized bids is not unique.

(⇐) To show sufficiency we argue by contradiction. Assume T̄i(a) + Fi(a)≤mi,∀i, a
and there is another equilibrium with bids b′i, running total T ′, and leading actions ã′(i)

such that b̂i (a∗) ̸= b′i (a
∗) for some i. First consider bidder i, for whom this is true. Note

that

b̂i ̸= b′i (a
∗) (40)

which implies

T ′
i

(
ã′j
)
+ Fi

(
ã′j
)
> T̂i(âj) + Fi(âj) (41)

Note that the inequality goes in this direction because the equilibrium that gives T̂ and â

is the one with the minimal bids on all actions up until i.

In this situation, for all j < i we have

T ′
j (a

∗) + Fj (a
∗)− T ′

j

(
ã′j
)
− Fj

(
ã′j
)
= b̂j (42)
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since i is the first divergence. Thus,

T ′
j (a

∗)+Fj (a
∗)−T ′

j

(
ã′j
)
−Fj

(
ã′j
)
= T̂j (a

∗)+Fj (a
∗)− T̂j(âj)−Fj(âj),∀j < i (43)

By the definition of i, we have that

T ′
j (a

∗) = T ′
j(a

∗),∀j < i (44)

and thus equation (43) reduces to

T̂j(âj)− Fj(âj) = T ′
j(ã

′
j) + Fj(ã

′
j),∀j < i (45)

By pivotal bidding, this means

b′j(a) + T ′
j(a)≤mj − Fj(a),∀a ̸= a∗, j < i (46)

which implies T ′
j(a)≤ T i(a),∀a ̸= a∗. By the definition of i, T ′

i (a
∗) = T̂i(a

∗). Combin-

ing this with equation (41), we obtain

T i(a) + Fi(a)> T̂i(âi) + F (âi) (47)

for some a. This contradicts the assumption T i(a) + Fi(a)≤mi,∀i, a.

Q.E.D.
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